Geometric insight into the challenges of solving high-dimensional reliability problems

نویسندگان

  • L. S. Katafygiotis
  • K. M. Zuev
چکیده

In this paper we adopt a geometric perspective to highlight the challenges associated with solving high-dimensional reliability problems. Adopting a geometric point of view we highlight and explain a range of results concerning the performance of several well-known reliability methods. We start by investigating geometric properties of the N -dimensional Gaussian space and the distribution of samples in such a space or in a subspace corresponding to a failure domain. Next, we discuss Importance Sampling (IS) in high dimensions. We provide a geometric understanding as to why IS generally does not work in high dimensions [Au SK, Beck JL. Importance sampling in high dimensions. Structural Safety 2003;25(2):139–63]. We furthermore challenge the significance of “design point” when dealing with strongly nonlinear problems. We conclude by showing that for the general high-dimensional nonlinear reliability problems the selection of an appropriate fixed IS density is practically impossible. Next, we discuss the simulation of samples using Markov Chain Monte Carlo (MCMC) methods. Firstly, we provide a geometric explanation as to why the standard Metropolis–Hastings (MH) algorithm does “not work” in high-dimensions. We then explain why the modified Metropolis–Hastings (MMH) algorithm introduced by Au and Beck [Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics 2001;16(4):263–77] overcomes this problem. A study of the correlation of samples obtained using MMH as a function of different parameters follows. Such study leads to recommendations for fine-tuning the MMH algorithm. Finally, the MMH algorithm is compared with the MCMC algorithm proposed by Katafygiotis and Cheung [Katafygiotis LS, Cheung SH. Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study, Structural Safety 2006 (in print)] in terms of the correlation of samples they generate. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions

In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.

متن کامل

New Multidimensional Visualization Technique for Limit-State Surfaces in Nonlinear Finite-Element Reliability Analysis

Structural reliability problems involving the use of advanced finite-element models of real-world structures are usually defined by limit-states expressed as functions referred to as limit-state functions of basic random variables used to characterize the pertinent sources of uncertainty. These limit-state functions define hyper-surfaces referred to as limit-state surfaces in the high-dimension...

متن کامل

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Construction and Validation of a Questionnaire on Metacognitive Knowledge Needed in Solving Mathematical Word Problems to be Used in Interviews

To provide researchers with an instrument, valid and reliable enough, for measuring students’ metacognitive knowledge needed in solving mathematical word problems, based on the theoretical foundation and previous research, a set of 24 questions at three levels of metacognitive knowledge was constructed. The initial validity of these questions was confirmed by Psychology Professors and high scho...

متن کامل

Global optimization of fractional posynomial geometric programming problems under fuzziness

In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006